Employment beta and the risk relevance of restructuring

The literature motivating this study

Value of the firm → Function of:

Future firm cash flows

What can the financial statements tell us about cash flows?

• e.g., Dechow, Kothari, Watts (1998); Ball & Nikolaev (2022)

Riskiness of the cash flows

What can the financial statements tell us about risk? (Barth, 2018)

- Earnings: Ball, Sadka, Tseng (2022); Ellahie (2021); Barth & So (2014)
- Specific expense: Restructuring

THIS STUDY

Restructuring expense is the object of this study

The human capital side of restructuring

- Restructuring includes:
 - a) Involuntary termination benefits
 - b) Costs to terminate a contract that is not a lease
 - c) Costs to relocate employees or consolidate facilities
- Expensed immediately when announced
- Comprised of committed costs
- Reported quarterly
- Reported in dollars (not people)

The aggregate side restructuring

- Reflects aggregate economic shocks (John, Lang, and Netter, 1992)
- Informative about GDP (Abdalla and Carabias, 2022)
- Informative about job destruction (Hann, Li, and Ogneva, 2021)

Restructuring has the potential to be useful, but is generally seen as not useful

The financial reporting side restructuring

- Not persistent
- Often excluded from non-GAAP earnings (Laurion, 2020)
- Excluded from Compustat operating earnings
- Excluded from earnings used in compensation (Dechow, Huston, and Sloan, 1994)
- More than just labor costs
- Part of "big bath" manipulations
- Conservative: asymmetrically informative (only labor divestment)

Demand shocks and employment fluctuations

In aggregate (macroeconomic)

At the firm (microeconomic)

Expected demand shock

Expected demand shock

 Aggregate labor demand response (Gali, 1999) • Firm labor demand response

- Actual aggregate demand shock
- Actual firm demand shock

Correlation: Systematic Risk?

Correlation: Systematic Risk

Restructuring

Data, measurement, and sample

Name	Symbol	Definition	Source
Restructuring	$restr_{i,t}$	Rolling 4-quarter restructuring expense scaled by beginning total assets (lower is more restructuring)	Compustat <i>(2001-2020)</i>
Operating earnings growth	$oigrow_{i,t}$	Operating income growth over the same quarter a year ago, scaled by beginning total assets	Compustat
Employment growth	$EMPL_t$	The percentage change in aggregate employment from the same quarter in the prior year, divided by 1,000	BLS

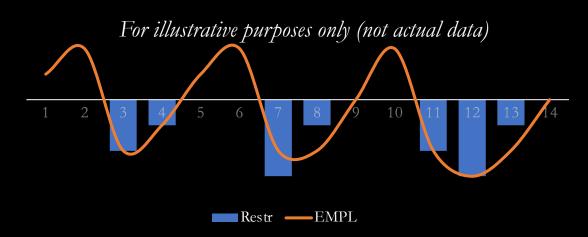
Firms with some restructuring between 2001 and 2020 (# obs)

Variable	N	Mean	SD	25P	Med	75P
$restr_{i,t}$	244,318	-0.0040	0.0105	-0.0026	0	0
$oigrow_{i,t}$	$244,\!318$	-0.0022	0.0314	-0.0059	0.0013	0.0097
$EMPL_t$	$244,\!318$	0.0003	0.0026	-0.0004	0.0014	0.0019

Restructuring as labor divestment

Negative firmyear restructuring

(Restructuring
reflects only
one side of the change)


Pearson: 0.05

Spearman: 0.22

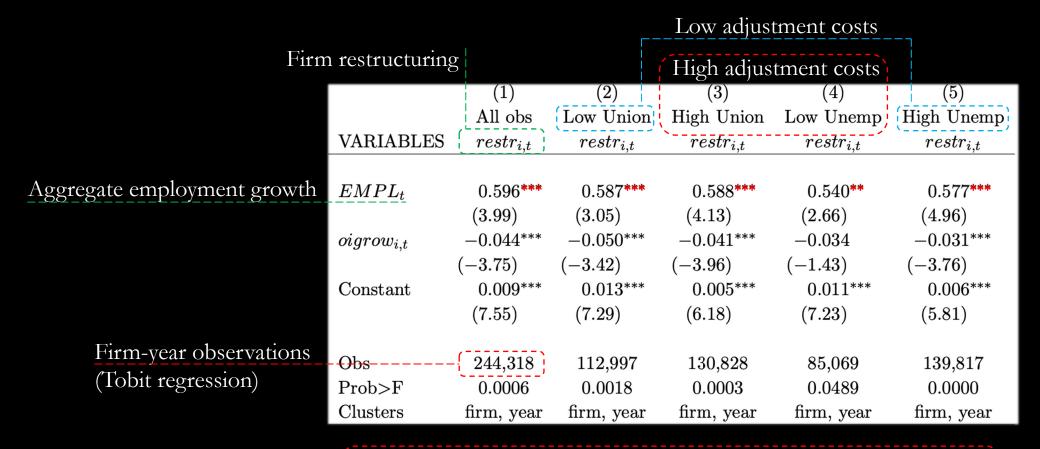
Consistent with:

- John, Lang, and Netter (1992): restructuring relates to a departure of 5% of employees
- Hann, Li, and Ogneva (2021): Restructuring, via SPI, is informative about cutting labor

Restructuring correlates negatively with firm-level employment

Restructuring is a censored variable.

Tobit regression:


$$restr_{i,t} = \alpha + \beta \times Employee \ Growth_{i,t} + \epsilon_{i,t}$$

$$\uparrow$$

$$0.38$$

$$_{(13.98)}$$

Aggregate component of restructuring

Split sample by adjustment costs

Restructuring correlates with aggregate employment, even when adjustment costs are higher.

Aggregate component of restructuring

Aggregate restructuring Low adjustment costs (cross-sectional mean) High adjustment costs (5)(1)(3)Low Union High Union All obs Low Unemp, High Unemp VARIABLES $AGGrestr_t$ $AGGrestr_t$ $AGGrestr_{t}$ $AGGrestr_t$ $AGGrestr_t$ Aggregate employment growth $EMPL_t$ 0.237**0.230***0.198**0.250***0.241**(2.62)(2.71)(2.59)(2.30)(3.03) OI_t -0.115^* -0.166**-0.162**-0.077-0.029(-1.81)(-2.42)(-1.57)(-2.50)(-0.72)-0.005***-0.004***-0.003***-0.002***-0.005***Constant (-18.65)(-16.87)(-20.36)(-12.08)(-22.24)Quarterly observations 81 81 81 81 Obs(OLS regression, Prob>F 0.0208 0.02320.01850.03360.0113 Newey-West (4) errors) 0.330.370.310.350.31R-squared

Separate timeseries based on adjustment costs

Restructuring correlates with aggregate employment, even when adjustment costs are higher.

The restructuring-based measure of systematic risk

CAPM: Market returns $[R_{i,s} - RF_s] = \alpha_i + \beta_i^{CAPM} \times [R_s^{mkt} - RF_s] + \varepsilon_{i,s}$ OLS

Restructuringbased measure: (Higher is more systematic risk)

$$|restr_{i,t}| = \alpha_i + \beta_i^{EMPL} \times |EMPL_t| + \varepsilon_i$$
 Tobit Negative firm Aggregate annual employment growth

Operating income measure:
(As a control)

$$oigrow_{i,t} = \alpha_i + \beta_i^{OI} \times EMPL_t + \varepsilon_i$$
Operating income growth scaled by beginning assets

OLS

С

The restructuring-based measure of systematic risk

Restructuring-based measure of systematic risk
Ranked restructuring-based measure of systematic risk
Conventional market beta
Alternative operating earnings-based measure

	N	Mean	SD	25P	Median	75P
β_{i}^{EMPL}	2730 (-	-1.7380	9.2414	-0.7861	0.0961	0.9362
$- \check{\underline{\check{eta}}}_{i}^{EMPL}$	(2730)	2.0000	1.4145	1.0000	2.0000	3.0000
β_{i}^{FF}	2688	1.0463	0.4156	0.7584	1.0193	1.2976
$\underline{\beta_{i}^{OI}}$	2730	0.0959	2.3330	-0.6853	0.2137	1.1593

Highly skewed

Number of firms

			eta_i^{EMPL}	\check{eta}_i^{EMPL}	eta_i^{FF}	eta_i^{OI}
	1	$\check{\check{eta}}_i^{EMPL}$	0.51			
	2	$\left(eta_i^{ar FF} ight]$	0.04*	0.11* }-		
	3	$eta_i^{ar{O}ar{I}}$	-0.00	-0.02	0.05^{*}	
	4	$size_i$	0.16^{*}	0.07^{*}	0.11^{*}	0.10^{*}
	5	mb_i	-0.03	0.01	0.02	-0.07^{*}
Sales per empl.	6_	$SperEmp_i$	-0.00	(-0.06*)	-0.00	0.08*
# employees	7_	$_Emp_i___$	-0.04*	0.02	-0.07^{*}	-0.01
Ext. labor share	8_	ELS_{i}	0.04^{*}	0.02	-0.07^{*}	0.06^{*}
Debt/equity	9_	DE_i	0.02	-0.02	0.05^{*}	0.04^{*}
Labor/capital	10_	$_LK_i___$	-0.01	0.08*	-0.06^{*}	-0.19^*
Total assets	11_	$_AT_i___$	0.18^{*}	0.03	0.06^{*}	0.16^{*}
PPE/AT	12_	$_Tang_i$	-0.01	-0.05*	0.02	0.18^{*}

Positive correlation with systematic risk

Higher dependence on labor, higher β_i^{EMPL} (More significant Spearman correlations)

Firm-specific systematic risk test

		(1)	(2)	(3)	(4)
	VARIABLES	eta_i^{FF}	eta_i^{FF}	eta_i^{FF}	eta_{i}^{FF}
Restructuring-based risk	$_{-}eta_{i}^{EMPL}$	0.002**		0.002**	
		(2.24)		(2.46)	
Ranked restructuring-based risk	$\mathring{\check{eta}}_{i}^{EMPL}$		0.031***		0.028***
			(5.56)		(4.76)
Operating-income based risk	$_{-}eta_{i}^{OI}$	0.008**	0.009^{**}	0.010^{***}	0.010***
		(2.44)	(2.53)	(2.89)	(2.84)
Labor leverage controls		No	No	Yes	Yes
Obs (firms)		2,688	2,688	2,495	2,495
R-squared (OLS)		0.004	0.014	0.050	0.057

Returns-based systematic risk

The restructuring-based measure of systematic risk is associated with higher returns-based measures of systematic risk.

The relation is not explained alternatively by operating earnings or labor leverage

Portfolio systematic risk test

Restructuring-based risk portfolio

Systematic exposure to the market

Fama-French-Carhart factor betas

OLS (similar results using Fama-MacBeth)

Portfolio	Lowest				Highest
$\underset{-}{\text{of}} \beta_{i}^{EMPL}$	(1)	(2)	(3)	(4)	(5)
Mean β_i^{EMP}	L - 12.308	-0.527	0.109	0.723	3.462
	,				
$oxedsymbol{eta_{p}^{FF}}$	0.933***	0.943***	0.983***	1.081***,	‡ 1.085*** , ‡
y	(79.10)	(101.02)	(120.63)	(117.00)	(94.77)
$\mid\mid eta_p^{SMB}\mid$	0.782^{***}	0.647^{***}	0.547^{***}	0.679***	0.841^{***}
	(43.13)	(45.26)	(43.78)	(48.13)	(48.42)
$\mid\mid eta_p^{HML}\mid$	-0.100***	0.131^{***}	0.261^{***}	0.104***	-0.095^{***}
	(-5.84)	(9.69)	(22.03)	(7.78)	(-5.80)
$\left \left\langle eta_{p}^{UMD} ight angle$	-0.139^{***}	-0.061^{***}	-0.075***	-0.114***	-0.194***
\\/	(-12.64)	(-6.98)	(-9.79)	(-13.14) (-18.41)
Constant	0.000	0.002^{***}	0.002***	0.002***	-0.000
	(0.19)	(5.93)	(6.75)	(5.60)	(-0.03)

- Monotonically increasing
- Highest three portfolios are significantly higher than the lowest

The restructuring-based measure of systematic risk is associated with higher returns-based measures of systematic risk.

Double-sort portfolio systematic risk test

Restructuringbased risk portfolio

Operating earnings-based alternative portfolio

			ρ_p		
β_i^{EMPL} portfolio	(1)	(2)	(3)	(4)	(5)
β_{i-}^{OI} portfolio					·
(1)	0.938^{***}	0.884^{***}	1.088***, [‡]	1.108***,‡	1.032***,
(2)	0.912^{***}	0.891***	0.879^{***}	0.933^{***}	1.079***, ‡
(3)	0.847^{***}	0.868***	0.869^{***}	$0.969^{***,\ddagger}$	1.046***,
(4)	0.932^{***}	1.076***,‡	1.033***, ‡	1.141***, ‡	1.119***, ‡
(5)	0.998***	1.087***,‡	1.232***,‡	1.228***,‡	1.136***,

 ρFF

Risk is increasing in restructuringbased measure at all levels of OIbased measure

The restructuring-based measure of systematic risk is associated with higher returns-based measures of systematic risk.

The increase is not explained by information in operating earnings

Out-of-sample portfolio systematic risk test

Restructuringbased risk portfolio, based on estimates of β_i^{EMPL} prior to estimation of FF factor loadings

Portfolio	Lowest				Highest
$\inf \beta_{i}^{EMPL}$	(1)	(2)	(3)	(4)	(5)
	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$
eta_p^{FF}	$(0.901^{***}$	0.931***, ‡	0.934***, ‡	1.007***, ‡	$0.968^{***,\ddagger}$
	(59.04)	(74.73)	(85.99)	(84.46)	(67.55)
eta_p^{SMB}	0.754***	0.536^{***}	0.458^{***}	0.445^{***}	0.672^{***}
	(30.78)	(26.76)	(26.27)	(23.26)	(29.19)
eta_p^{HML}	0.033^{*}	0.193^{***}	0.283^{***}	0.194^{***}	0.010
	(1.67)	(12.12)	(20.42)	(12.71)	(0.53)
eta_p^{UMD}	-0.075^{***}	-0.123***	-0.103^{***}	-0.086^{***}	-0.096***
1	(-3.83)	(-7.69)	(-7.40)	(-5.57)	(-5.22)
Constant	-0.002^{***}	-0.000	0.000	0.000	-0.001**
	(-3.14)	(-0.82)	(0.95)	(0.44)	(-2.16)

- Increasing, monotonically through portfolio 4.
- Highest 4 portfolios are significantly higher than the lowest portfolio.

The restructuring-based measure of systematic risk is associated with higher returns-based measures of systematic risk.

The increase is not explained by overlapping beta calculations.

Do risky firms realize firm and aggregate demand shocks?

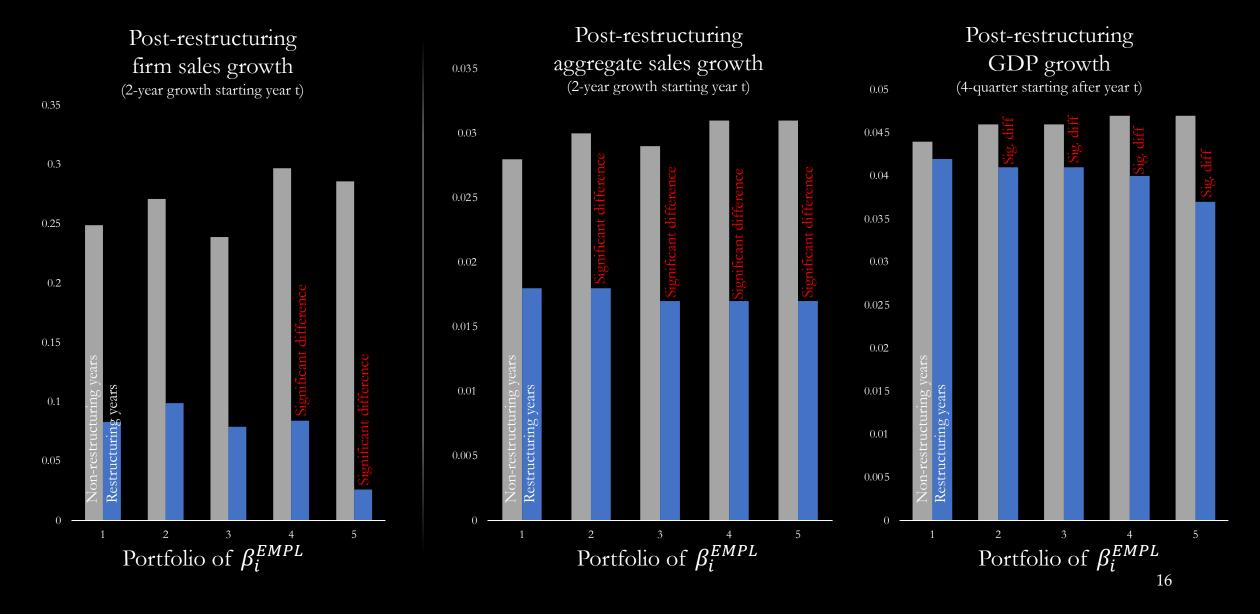
Expected demand shock

Correlation:
Systematic Risk

Aggregate labor demand
response (Gali, 1999)

Actual aggregate demand
shock

At the firm (microeconomic)


Expected demand shock

Firm labor demand
response (restructuring)

Actual firm demand
shock

Do firms that demonstrate labor divestment patterns consistent with the aggregate market actually realize firm and aggregate demand shocks after restructuring?

Do risky firms realize firm and aggregate demand shocks?

Do risky firms reverse more restructuring?

In aggregate (macroeconomic)

At the firm (microeconomic)

Expected demand shock

Expected demand shock

- Aggregate labor demand response (Gali, 1999)
- Firm labor demand response (restructuring)

- Actual aggregate demand shock
- Actual firm demand shock

For high β_i^{EMPL} firms, the expected demand shock is macroeconomic

- Firms know less about macroeconomic shocks versus firmspecific shocks (Hutton, Lee, Shu, 2012)
- Firms are operating with more uncertainty about the macroeconomic shock versus firm shocks
- Firms restructuring because of aggregate shocks are more likely to mis-estimate and need to revise restructuring accruals

Higher β_i^{EMPL} firms will reverse more of their restructuring

Do risky firms reverse more restructuring?

Average number of reversals

Ranked restructuring-based measure of systematic risk

Number of restructurings

Dollar value of restructurings

	(1)	(2)	(3)	(4)
VARIABLES	μ_i^{Rev}	$\mu_i^{Rev\$}$	μ_i^{Rev}	$\underline{\mu_{i}^{Rev\$}}$
\check{eta}_{i}^{EMPL}	(0.003***	0.013***	0.002***	0.009***
	(6.65)	(4.45)	(4.23)	(3.03)
eta_i^{OI}			-0.000	-0.000
			(-0.45)	(-0.23)
$restrF_i$			0.025^{***}	-0.017
			(7.11)	(-0.90)
$restr\$_i$			-0.703***	-7.478***
			(-3.90)	(-7.50)
$size_i$			0.000	-0.006**
			(0.97)	(-2.37)
Constant	0.013***	0.027^{***}	-0.002	0.090***
	(10.69)	(3.94)	(-0.31)	(2.79)
Observations	2,730	2,730	2,691	2,691
R-squared	0.016	0.007	0.075	0.039

Average reversal amount (positive)

Firms with higher levels of β_i^{EMPL} have more frequent and bigger reversals of restructuring

Alternative expected aggregate demand shock

In aggregate (macroeconomic)

At the firm (microeconomic)

Expected demand shock

Expected demand shock

 Firm labor demand response (restructuring)

- Actual aggregate demand shock
- Actual firm demand shock

- Do firms with higher β_i^{EMPL} restructure during periods of high VIX?
- Do firms that restructure during periods of higher VIX have higher systematic risk?

- Aggregate labor declines can be criticized as a measure of aggregate demand shocks (e.g., supply shocks, technology shocks)
- Another macroeconomic effect of expected demand shocks is increased uncertainty about the aggregate market
- VIX uses implied volatilities across the S&P 500 to construct an aggregate uncertainty index ("fear index")
- VIX is associated with aggregate demand shocks and lower growth (Foerster et al., 2014; Leduc and Liu, 2016)

Alternative expected aggregate demand shock

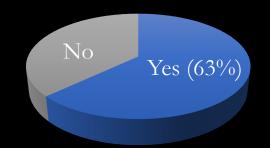
VIX as of the period of restructuring

$$restr_{i,t} = \alpha_i + \beta_i^{VIX} \times VIX_t + \varepsilon_{i,t}$$

- Tobit estimation by firm
- Restructuring is negative, higher VIX is more uncertainty
- Lower (more negative) β_i^{VIX} means higher systematic risk and higher β_i^{EMPL}

Panel A: Means of aggregate uncertainty by portfolio of β_i^{EMPL}								
Portfolio	Lowest				Highest	Correlation with:		
of β_i^{EMPL}	(1)	(2)	(3)	(4)	(5)	$\check{\check{\beta}}_i^{EMPL}$		
VIX_t	3.99663	7.65347	7.34578	9.43442	8.14575	0.13246***		
$\underline{\beta_{i-}^{VIX}}$	0.00206	0.00027	-0.00000	-0.00022	-0.00128	$-\underline{0.59532^{***}}_{-}$		

Portfolio	Lowest				Highest
of β_i^{VIX}	(1)	(2)	(3)	(4)	(5)
	$R_{i,t} - RF_t$				
	,				
β_p^{FF}	1.092***	1.082***	0.950***	0.958***	0.944***
•	(95.89)	(118.18)	(113.23)	(104.86)	(80.70)
β_p^{SMB}	0.817^{***}	0.620^{***}	0.588^{***}	0.648^{***}	0.816^{***}
•	(47.26)	(44.34)	(45.89)	(46.40)	(45.12)
β_p^{HML}	-0.148***	0.126^{***}	0.300^{***}	0.102^{***}	-0.072^{***}
	(-9.06)	(9.48)	(24.68)	(7.70)	(-4.23)
β_p^{UMD}	-0.192***	-0.107^{***}	-0.073***	-0.074***	-0.137^{***}
•	(-18.27)	(-12.50)	(-9.31)	(-8.62)	(-12.43)
Constant	0.001*	0.002^{***}	0.002^{***}	0.002^{***}	-0.000
	(1.91)	(4.95)	(5.64)	(6.55)	(-0.70)
Observations	$103,\!558$	106,543	$107,\!548$	106,631	101,722
R-squared	0.177	0.217	0.212	0.185	0.138


Firms with higher β_i^{EMPL} restructure when VIX is higher

Firms with higher β_i^{EMPL} have lower β_i^{VIX}

Firms with lower β_i^{VIX} have higher systematic risk

Industry-level β_i^{EMPL}

Firms with some restructuring between 2001 and 2020 (# obs)

$$restr_{ind,t} = \alpha_{ind} + \beta_{ind}^{EMPL} \times EMPL_t + \varepsilon_{ind,t}$$

- $restr_{ind,t}$ is the cross-sectional average of $restr_{i,t}$ by NAICS2
- *EMPL*_t is still aggregate employment growth
- All firms in the same industry have the same β_{ind}^{EMPL} (ties create unbalanced portfolios)

Only include the 37% of firms with no restructuring expense between 2001 and 2020

Portfolio	Lowest				Highest
of β_{ind}^{EMPL}	(1)	(2)	(3)	(4)	(5)
	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$	$R_{i,t} - RF_t$
	Monotonically increasing				
eta_p^{FF}	0.658***	0.966***, ‡	1.022^{***}	1.054^{***}	1.112***, ‡
	(105.50)	(81.93)	(75.36)	(85.80)	(81.11)
eta_p^{SMB}	0.528^{***}	0.680^{***}	0.922^{***}	0.864^{***}	0.729^{***}
	(58.29)	(37.82)	(46.65)	(50.17)	(38.34)
eta_p^{HML}	0.471^{***}	0.276^{***}	-0.126***	-0.138^{***}	-0.469^{***}
	(54.11)	(16.30)	(-6.71)	(-8.27)	(-25.46)
eta_p^{UMD}	-0.045^{***}	-0.126^{***}	-0.115^{***}	-0.179^{***}	-0.294***
	(-7.99)	(-11.27)	(-9.10)	(-16.54)	(-24.27)
Constant	0.002^{***}	-0.003***	-0.004***	-0.003***	-0.002***
	(8.27)	(-6.97)	(-8.89)	(-5.82)	(-4.58)
Observations	195,766	93,696	$101,\!586$	115,011	92,909
R-squared	0.140	0.150	0.129	0.149	0.171

Conclusion

There is evidence that restructuring costs, taken in context of expected demand shocks, can provide systematic risk information.

Human capital information, even if limited, is useful in valuation

Thank you.

Does restructuring need to be layoffs?

```
Yes: restructuring = layoffs = expected demand shock
```

No: restructuring = expected demand shock

No: layoffs = expected demand shock

- The paper is about labor flows indicating risk, a broadly interesting idea
- The paper is about the risk relevance of financial statement information (an accounting idea)
- But it is a noisy measure of layoffs, and will be criticized for this

- Can avoid measurement debates
- Paper is about the risk relevance of financial statements
- So then, why restructuring
 - Why not goodwill impairment, changes in SG&A, MD&A, etc.
- Paper is not about labor flows indicating risk, only restructuring expense, diminishing the contribution

- The paper is about labor flows indicating risk, a broadly interesting idea
- Need to do substantial work/investment to find a broadly available measure of layoffs
 - Change in employees?
- Paper is not about the risk relevance of financial statement information